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» ABSTRACT

A 2D digital image S is represented conventionally by the union of grid squares
containing pixels of S which we denote by F(S). This gives the correct topology for S

fc:. with 8-adjacency, and with a little imagination, 4-adjacency can also be properly han-
1998 dled. However, one encounters difficulty in extending basic 2D results to 3D digital im-
.:". ages. The last few years have seen the need for better methods which give a closer link
: 3: with well developed continuous topology, especially with the advent of digital surface
®) theory [11]. We define a new continuous model F(S) by refining F(S). We show that
¥ this gives a better bridge between the two subjects, digital and continuous topologies.
e We also show how this space F(S) is related to two other continuous models [4] [7].
LN Although we concentrate only on 2D images in this paper, the concepts and general ideas
X ': extend to 3D images. A 3D version of this paper is in preparation.
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OO 1. Introduction
,:'::: A digital image is a discrete sample of a continuous picture in real life. The
.f:',::‘ sample is usually taken on an evenly spaced grid point set on a rectangular
‘ . domain of a plane. To be definite, think of the set of points with integral coordi-
Wl
'21 nates in the z-y plane as the grid point set.
N
“;-'C: For example, suppose the sample looks like the figure below:
) 1¢ 1100
o 4
™ 0011
s "::
o Figure 1.1. The 1’s indicate pixels of an object, and the 0’s indicate pixels
Y of the background.
. "‘:
e
ey The natural question is ‘‘Does this digital sample suggest one (connected)
o
[ ="
e object or two separate ones of similar appearance?’’ Of course, it also depends on
N ' how the sample was taken, but this is not our concern here. We are interested in
i ::_.3:

defining geometric concepts on digital images consistently and realistically, which

Ay
R
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o
'

is about all we can do without knowing the original picture. Returning to the

% Ot

connectedness question, if we regard the set of 1's shown above as a connected

vy
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set, then the set of 0’s should be a disconnected set in order to be consistent with

the standard topology on the Euclidean plane. Thus it is customary in digital

i@ oy

0
.

el

;‘_:;:; topology to use different adjacency topologies on a digital image (denoted by S)

"_.:' s

d and on its background (regarded as the complementary set, and denoted by S). Y é"‘

. . . . . R a

7 For example, if 8-adjacency is used on S, which makes the 1’s in Figure 1.1 con- 4 0O
LR
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MBL nected, then 4-adjacency is used on S which makes the 0’s disconnected.
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In order to approximate the unknown original picture by a continuous one,
it has been the tradition to represent each point p in the digital image S by the
closed unit square around p, and to represent S by the union of all such squares.
L.et. us derote this union by F ‘(S ). This gives a good topological representation
for the 8-adjacency topology on S in the sense that S is connected in this topol-
ogy if and only if F(S) is connected in the usual Euclidean topology. Of course,
we cannct say the same thing abo1’ the 4-adjacency topology at the same time.
However, it is not difficult to describe the connectedness property using generally

accepted terms of Euclidean topology in F (S).

%
. —

I

(a (b)
Figure 1.2. (a) F(S), the traditional pixel representation. (b) E (S ), the skeletal

representation used for computing the Euler characteristic number
of S.

An alternative to the square representation has existed all along, dating back
to Minsky and Papert’s 1969 Perceptrons [8]. In computing the Euler charac-
teristic number of a digital image S, they took a point for each point in S, a line
segment for each pair of 4-adjacent points, and a square for each 2X2 matrix of
four 4-adjacent points in S. This gives a good skeletal representation of S with
4-adjacency which will be denoted by E(S). Of course, it is not difficuit to deal

with 8-adjacency as well. Curiously enough, all subsequent authors (except Mor-
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genthaler [10]) used this representation only in computing Euler characteristic

numbers until Kong and Roscoe used it for other purposes in 1985 [7].

As long as one is concerned with only 2D images, there is no real difficulty in
defining continuous representations of digital images. The situation is different
when we consider 3D images. A number of basic facts about 2D images were
generalized to 3D images without great difficulty, leading to the initial develop-
ment of 3D digital topology by Rosenfeld in 1980 [15], but one crucial theorem
for this foundation did not yield to an easy generalization. It is Proposition 5 in
[15]. The stumbling block was the fact that the corresponding theorem for 2D
images used a boundary curve tracking algorithm which did not extend to surface
tracking in 3D in any obvious way. Meanwhile Herman and his colleagues were
developing such a surface tracking algorithm. Based on topological results from
the classical book by Newman [12], Herman and Webster proved [4] that their
previously developed algorithm [1] [2] was correct. However, the surface traced
by their algorithm is not a surface in the strict topological sense. Nevertheless,
the main result of this work was essential to the proof of Proposition 5 given by

Morgenthaler and Rosenfeld in [11].

During the same period of time, a theory of digital surfaces was developed
(11]. A surface was defined as a digital image satisfying a certain set of axioms

analogous to the axioms for a manifold in topology. Although this definition is

.
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] clever and simple, it was no easy task to prove the digital analog of the standard
EE::::: fact in topology that a closed surface in Euclidean 3D space is orientable [14].
oo
““'”L Thus it was natural to seek for some closer connection between the two subjects,
3
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,"-:" the newly developed 3D digital topology and the well established Euclidean topol-
‘:‘w ogy, so that one zould use known facts from this latter discipline. Recently Kong
‘\1 and Roscoe did precisely that in 1985 (7]. They defined the continuous analog of
: a digital image as the 3D version of the representation considered by Minsky and
ﬁ' 7 Papert and others as mentioned above, and proved that a digital image S is a
A }- surface in the sense of Morgenthaler and Rosenfeld [11] if and only if its continu-
" ous analog is a surface in the strict topological sense. In other words, the
,{:i axiomatic definition of a digital surface given by [11] was correct (if direct adja-
%j cency is used on the digital image, and indirect adjacency is used on the back-
:.E:j ground image).
; ﬂi_ The purpose of this paper is to propose another method of describing a digi-
>
it tal image S by a continuous representation to be denoted by F(S). This
representation F (S) seems more consistent with the topological behavior of
‘_ Euclidean space in the sense that it tends to give easier access to basic results
? from that well developed subject. We first give a new proof of the main theorem
:: of Herman and Webster [4] from a conceptual point of view. Their proof is a
"- combinatorial analysis of different types of strong connectedness. We reduce all
- these to the usual connectedness in topology using f‘(S ). We use this as a
E{% motivation for defining F (S), but the advantages of 1':'(3) should be apparent
;i once one sees the definition. To define it, we introduce a concept of singularity
}_‘1" similar to that used in algebraic geometry and differential topology. We then

adopt one of several possible ways of removing the singularities from F (S ). The

LY ‘l

L

resulting topological space F(S) is a compact manifold with a bsundary in the
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strict topological sense. In particular, the boundary is a true surface in the 3D
case, and a true curve in the 2D case. This surface is an approximation to the

surface traced by the surface tracking algorithm mentioned above.

We begin with brief descriptions of F (S ) and U (S ), and with the introduc-
tion of cellular complexes in a very restricted sense (Section 2). In the following
two sections, we define a 2D analog of the surface tracking algorithm by means of
a graph [1] [2] [4], and we give a definition of F (S ) while constructing a proof of
the 2D analog of the theorem due to Herman and Webster [4]. Combining the
results in Sections 2 and 4, we give a proof of Proposition 5 {11] (Section 5).
Finally, the three continuous representations of a digital image are shown to be
intimately related (Section 6). For example, the 2D analog of the above men-
tioned surface tracking algorithm can be used to trace the continuous analog
E(S).

The content of this paper is devoted to 2D images, but it is so arranged as

to yield an easy extension to 3D images in principle.
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2. Continuous representations

We assume that the reader is familiar with the basic definitions and elemen-
tary facts about 2D digital geometry given in {16]. Let £ be the set of all
integral points within a large rectangular domain in R2, and let S be a subset of
L. For each p in L, define F(p) to be the unit closed square with p at its
center, that is the set of all points (z,y) in R?® such that
|z -p,] < 1,|y -ps] < 1. Define F(S) to be the union of F(p) for all p in §,
and U(S) to be the interior of F(S). (In analogy to F(p ), one could define the
open set U(p) for p in S to be the interior of F(S). However, this would be
quite useless since the union of the U(p) for p in S consists of disjoint open
sets.) Notice that F(S) (resp. U(S)) is connected in the sense of the standard
Euclidean topology if and only if S is 8- (resp. 4-) connected in the sense of digi-

tal topology. In other words, we can say that:

The 8- (resp. 4-) adjacency topology on a 2D digital image S is well represented
by the standard Euclidean topology on F (S) (resp. U(S)).

The topological spaces F(S) and U(S) will be referred to as continuous
representations of S (in the primitive form). ¥ and hence S being a finite set,
F(S) (resp. U(S)) is a bounded and closed (resp. open) subset of R2. Thus if §
is represented by F (S ) then the complementary set S (called the background)
should be represented by U(S). If we assume that S does not meet the boun-

dary of £, we have

UL)=F(S)yU(S).
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This is the basic reason for using the 8-adjacency topology on S if the 4-

adjacency topology is used on S.

Now we study global properties of the topological space F(S) by means of
the adjacency relations among the constituent blocks F(p ) for p in S. The set
together with the set of these blocks is a special case of a cellular complex(*)
which we shall not define precisely here. One relevant remark is that it is some-
times important to distinguish the single set F (S) from the collection of all its
constituent cells: all squares F(p) for p in S, all their edges, and all their ver-
tices. If we denote this collection by K then we denote the union of its consti-

tuent cells by |K | which is F(S). The figure below shows an example,

Figure 2.1. (a) S = {p,q,r}. (b) F(S).
where K consists of 3 squares, 10 edges, and 8 vertices. Fortunately the cell
complex K made out of the cells in F(S) is uniquely determined by the single
set F(S). A cellular 1-complex() is a collection of edges in some F (S) together
with all their vertices. If L is a cellular 1-complex then |L | denotes the union of
all edges in L. For example, let E = F(p)[) F(q), the common edge of two
squares, and let », v be the two end points of E. Then L = {E,u,v} is a cel-
lular 1-complex. For any pixel p in £, define the (cellular) boundary 8F (p) to

be the 1-complex consisting of its four edges and the four corner vertex points.
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S8 Notice that the set-theoretic boundary Bd F(p) in R? is simply |3F (p)|. If
. E =F(p)(\F(q)withp in S, ¢ in § then we denote p = t(E), ¢ = o(F)
o) )

- (¢ for inside, o for outside). Of course, all these depend on S. We define the
2

"‘ (cellular) boundary 9F (S) to be the 1-complex consisting of all edges E and the
i

oy end point vertices of E for which there are pixels p in S, ¢ in § with
2

) E =F(p)() F(gq). We leave to the reader the proof of the following impor-
- .

- tant but not difficult lemma:
\ Lemma |2F (S)| = Bd F(S).

=

..
o

g

o
.
1o

b8

.
o)
o (*)The cellular complex, also known as the CW complex, was initially
N defined by the English mathematician J.H.C. Whitehead in the 1930’s. It con-
- sists of very general types of cells. It was invented for studying the deeper struc-
:-;-I ture of a topological space, such as multiple-connectedness. It is used for com- J
; - puting global properties. For example, the Euler characteristic number of a CW ‘
AN complex can be computed by counting the number of cells in each dimension |

which is shown to depend only on the underlying topological space independent
of any particular cellular complex on the space. See Spanier (1966) [17] for a
T more comprehensive exposition on this subject. Of course, we need only consider
S the very special case arising from digital topology. Klette formulated such a spe-
L cial type of cellular m-complex in Euclidean n -space. (See Klette (1983) [6].) It
would be useful to establish, in this setting suitable to digital topology, elementa-
ry facts analogous to those in algebraic topology. The only work involving
':-',; homology groups in digital topology appears in Janos and Rosenfeld (1981) [5].
This work too touches very lightly upon an algebraic method from topology.
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3. Graph representation

In this section we shall define a 2D version of the graph due to Herman et al.
(1] [2] [4] as a data structure for a boundary curve. Following their notation, let
Q = F(S) be a cellular complex, and let P = R%>- Q. Two edges E, F in
dQ are said to be P-adjacent if (1) E, F are adjacent, i.e., £, F have a com-
mon vertex, and (2) o(E)=o(F), or o(E), o(F) are 4-adjacent, or o (E),
o(F) are 4-adjacent to a common pixel in S. Notice that the first condition
determines a 2X2 matrix containing all of the pixels o (E), i (E), o(F), i(F),
and that the second condition is equivalent to the statement that (2') o (E),
o(F) are 4-connected within the 2X2 matrix. There are six possible cases of

relative positions of o (E ), 1 (E ), o (F ), and i (F ) within the 2X2 matrix:

E E E E E E
0 1 0 1 0 1 0 1 0 1 0 1
F F F
1 0 1 1 o] 1 0 1 1 0 0 0
F F
(2) (b) (c) (d) (e) (f)

Figure 3.1.

The edges E, F in Figures 3.1 (a), (b), (c), (f) are P-adjacent whereas those in
the other two figures are not. A P-component of 3Q is defined as usual. Define
a graph for 8Q by: For each edge in 8Q , create a node n(E ), and for each P-
adjacent pair of edges E, F, connect the nodes n(E ), n(F ) by an arc. We shall
denote the graph by ¥(@ ). We can turn 7(@Q ) into a digraph by: For each p in

T. orient F (p) clockwise, and let the induced orientation on the four edges be as
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LY

Thus if E = F(p) () F(q) then the two orientations on E induced by those on

F(p), F(q) are opposite. For each edge £ in 8@, we shall use the orientation

.- on E induced by o(E). Thus E is a directed line segment, written £ = ud.
. Define an ordered pair E, F to be P-adjacent if the end point of the directed
line segment of E is the beg_inning point of the directed line segment F, that is,
_-_-~_1:-j if E = ub then F = o, Clearly P-adjacency implies P-adjacency. A quick
_ survey of all six cases in Figure 3.1 shows that if E, F are P-adjacent then
_ either £, F, or F, E are P-adjacent. This then makes it possible to direct
_'T every arc of the graph 7(Q ). We shall denote the resulting digraph by ['(Q ).
The examples below reveal some interesting facts about these graphs.

N
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Figure 3.3. (a) S.(b) @ = F(S). (¢) 2Q with directed edges.
(d) Digraph I'(Q ).
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(a)
Figure 3.4. (a) S.(b) @ = F(S). (c) 8Q with directed edges. (d) I'(Q ).

Notice that in Figure 3, ['(Q ) has three components whereas 9@ has only two,

and that in Figure 4, both 8Q and I'(Q ) have only one component each.
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4. Continuous representations in the refined form

The purpose of this section is to introduce a concept of singularity in a digi-
tal image S, and to show how to remove the corresponding singular point from
the topological space F(S) to construct a better continuous model for S. We
shall do this while deducing a 2D version of the main theorem in Herman et al.

[4] from a purely topological theorem proved in Appendix A.

Let @Q = F(S)and P = R2- Q as before. Let C be a component of Q,

and let D be a component of R%2- C.
Proposition 4.1. Bd D is a P-component of 3Q .

In general, a P-component is not a component of 3Q as seen from the
example in Figure 3.3¢c, and a P-component is not a simple closed curve as seen
from the example in Figure 3.4c. It is clear from the definition that P-

components are connected sets.

We need only prove that (1) every pair of points of Bd D are in the same
P -component; (2) if F C 9Q is an edge in the same P-component of an edge E
in Bd D then F C Bd D. First notice that Bd D is a cellular l-complex in
which each edge E has the property that U(o(E)) C D, F(i(E)) C C. For (2)
we need only prove it when F is actually P-adjacent to E, but then o(E),
o (F) are in the same 4-component in R2- C and i (E), i (F ) are 8-connected in

@, and hence F(i(F))C C, U(o(F)) C D implying F C Bd D as claimed in

(2)-

12
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For (1), it follows from Proposition A in Appendix A that Bd D is con-
nected. Thus if we know that components and P -components are the same then
we are done. A study of ail six cases of adjacent pairs of edges £, F in 4Q in

Figure 2 showed that non-P -adjacency occurred only in a 2X2 square of the

form 10 Such a square (or its rotation by 90 degrees) shall be referred to as a

singularity in S. The non-existence of a singularity in S guarantees that any
adjacent edges in 3Q are P-adjacent. Thus if we assume that there is no singu-

larity in § then we are done.

0
Now assume the existence of singularities in §. If q

L . .

ois2 singularity then
the common vertex point F (p)[) F(g) will be called a singular point in F(S).
The key problem in representing S by F (S) arises from the presence of singular

points: F (S) looks like %/% near a singular point z and is connected via

a single point. At the same time, the background set near z consists of two dis-
joint open sets but they are so close that their boundaries meet though only at a
single point. This problem can be solved by modifying F (S ) slightly near each
singularity of S. Incidentally, this kind of problem exists in many other fields
such as algebraic geometry, differential topology, etc. There are several possible
ways of resolving singularities, but here we shall adopt the simplest one which
may be achieved in practice by taking a sufficiently find grid. The basic idea is
to widen the bottle-neck at z from F (p ) to F (g ) without altering the global pic-
ture of F(S). For each singular point z, simply add to F(S) a 1/4-size closed

square o, with its center at z.
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Figure 4.1. (a) Near a singular point z in F (S). (b} The singular point
z resolved in F (S) by adding a small square around z .

Let F(S)= F(S) \U (U 95,) where z; ranges over all singular points of
F(&). One could use a unit size square for o, , but this would alter the shape of
F (S) too much. Now F(S) has no singular points. Write @ = Q U (Us 92,)

C=cC J (Uj a,}) with z; in C, D=0D- (Ui 9z,- Then C is a component
in Q and D is a component in R2%- Q In this case, Bd Dt has just been
proved to be a component of BQ . Hence Bd Dt is a simple closed polygon, and

the corresponding Bd D is a P-component of 8Q . [/

The space F (S) gives more accurate topological descriptions of the digital
image S, and its border sets with respect to 8-adjacency on S. The alteration of
F(S) altered U(S) as well. Define U(5)to be U(Z)- F(S). We shall refer to
i'(S ) (}(.-S'-) as continuous representations of S with 8-adjacency (in the refined
form).

We can define F (S) analogously for 4-adjacency on S; in this case the open
square around z is removed from F (S) for each singular point z in F(S). Thus

F (S) depends on the type of adjacency used on S. When there is possibility of

confusion, we shall use F, (S) for z-adjacency.
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Morgenthaler considered the problem of finding conditions on S under which

the topological space F (S) correctly represents the digital topology on S. The

v
v
\j-,}: conditions he proposed were phrased in terms of local connectedness. It turns out
e
) that those conditions were devised to guarantee the non-existence of a singularity
i '. "
:' in S. We shall prove this in Appendix B.
)
4 s Before closing this section, we wish to pont out that resolution of singularity
o can be achieved on the digital level. First subdivide the grid space into half-units
U
iy on each axis. Thus each unit square is subdivided into 4 smaller squares.
h} [
)
KD Replace each pixel by 4 new pixels of the same kind. So far, there is no real
o
'y change; a singularity remains a singularity. Now we replace each singularity in
L":\-:
:’L_}:. S as in the figure below:
< \{P.«
t‘.l ’.
| 0011 0011 0011
:‘;.1; 01 0011 0111 0001
g 10 1100 1110 1000
_f'_- 1100 1100 1100
e (a) (b) (¢) (@)
E «. Figure 4.2. (a) A singularity. (b) Finer grid. (c¢) Singularity resolved for
:'é _2 8-adjacency on S. (d) Same for 4-adjacency on S.
‘.:-‘- It may be wiser to use a finer grid for a closer geometric approximation. We
) .‘:‘
E_—. actually used a 1/4 unit length size grid in the definition of F (S).
i
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5. Application to a connectedness theorem in digital topology

The following theorem on 2D images was proved in Rosenfeld and Kak [16]
and its 3D analog was proved indirectly using the surface tracking algorithm due
to Herman et al. in [{1] [2] [4]. The purpose of this section is to show how the
method of continuous representation of the previous section may be used in
deducing this basic theorem in digital topology from the topological result of the

previous section.
Proposition 5.1. Let S be a digital tmage. Let C be a §-component of S,
and D an 8-component of S such that C, D are {-adjacent. Then Cp s §-

connected where Cp 1s the set of p in C which are 8-adjacent to D.

Let us first prove the following exact digital analog of the theorem of the
previous section:

Lemma 5.1. Let S be a digital image. Let C be an 8-component of S, and
let D be a 4-component of C. Then D, s {-connected where D 1is the set of all

p in D which are 8-adjacent to C.

Let @ = F(S). Then F(C)is a component of F (S). Assume that S does

F'?'_'" not meet the border of £ and that U(X) has no boundary so that F(S) C U(Z).
1y
::k Take any pair p, ¢ in Do. We want to show that p, ¢ are in the same 4-
iy

component. By assumption, p is 8-adjacent to C. Assume p is not 4-adjacent

0

:j::. to C. Then there is a pixel a in C located relative to p forming a 2X2 matrix
=
L P . = :
ﬁ\:‘-j Here the other two pixels (z’s) must be in C'. They are 4-adjacent to p.
w
[ ] .
o and hence are in the same 4-component as p, namely D. Let b be one of these
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z'’s. Then the edge £ = F(a) N F(b)is in Bd D. Similarly there are pixels
¢ in C, d in D such that ¢, d are 4-adjacent and ¢, d are also 4-adjacent.
The edge G = F(c )\ F(d)is in Bd D. Now by Proposition 4.1, E, G are
in the same P-component. This implies that b, d are in the same 4-component

in D¢, and hence p, ¢ are also. [/

To prove the proposition, let D’ be the unique 8-component of C containing
D. In view of the above lemma, we need only show Cp = Cp.. The relation
“C" follows immediately. Observe that Cp is the set of pixels p in C such that
F(p)MNOF(D)s 0. Similarly for Cp. This reduces to proving
OF (D'Y C dF (D). Remember that 8F (D) is the union of all edges £ such that
E = F(p)m F(q)forp in D, q in D. Similarly dF (D') is the union of all
edges E' such that E' = F(p') M F(q') for p’ in D', ¢’ in D’. Actually ¢’ is
in C in the above expression of E’. If ¢’ ¢ C then ¢’ € D’ since p’, ¢’ are 4-
adjacent, and D' is an 8-component of C. We need only prove that if E, E' are
adjacent edges such that E C 8F (D) and E' C OF (D') then E' C 9F (D).
Write E' = F(p')[) F(q') as explained above. Now we need only prove that
p' €D and ¢' € D. Since C MDD =40, ¢ € C implies ¢' € D. To prove

q' € D. consider all possible cases of E, E': If p = p’ then p’ € D since

p € D. Suppose ¢ or y is p in the figure below:




If p! €S then p’ € C since p’, ¢’ are 4-adjacent, which is absurd. Thus we

must have p’ € S, but then p’' € D since p' is 8-adjacent to p. Finally notice

P e N 3
Lt ]
PO R R P )

that p = ¢’ is not possible sincep € D Cc S andg'€ C C S. //
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6. Relations among various continuous representations

In this sect'ion, we shall describe how closely the three different continuous
representations of a digital surface are related. For a 2D digital image S with 4-
adjacency, define a cellular complex E (S ) whose vertices are the mid-points v (p )
of the squares F (p) for p in S, whose edges are the line segments connecting 4-
adjacent pairs in S, and whose squares are the convex hulls of the four vertices
of 2X2 matrices of 4-adjacent pixels. Notice that this is slightly more general
than the definition given in Section 3. The example below should clear up any

ambiguity about this definition.

[ ]
00100 —
11011
00111
(a) (b)

Figure 6.1. (a) S. (b) E(S).
One can easily extend this definition to higher dimensions with various types of
adjacencies. Kong and Roscoe did an extensive study of 3D digital topology in
[7], in which they prove that a digital image S with 8-adjacency is a digital sur-
face in the sense of Morgenthaler and Rosenfeld {11] if and only if the 3D analog
E (S) is a surface in the strict topological sense. We shall prove in essence a 2D
analog of the theorem: If a 3D digital image S is a digital surface in the sense of
[11], then F(8) is topologically equivalent to the cross product E(S) X [0.1]

(E (S) fattened), to be denoted by E(S) where [0,1] is the closed unit interval.

19




Moreover, the surface tracking algorithm can be used to trace any boundary com-

ponent of F (S ), and hence any component of E(S). For any pixel p, denote
by N(p) the set of all 8-neighbors excluding p. Recall that a pixel p in S is a
4-curve point if the following 2D analog of a simple .surface point is satisfied:
N(p) M S has exactly two components 4-adjacent to p, N(p) 1 S has exactly
two components 4-adjacent to p, and every ¢ in N(p) Msis 8-adjacent to !
both of these components. S is a digital 4-curve if every pixel of S is a 4-curve
point. This defines a digital analog of a compact 1-manifold without boundary in
the sense of continuous topology. Such a space is known to be a finite family of
simple closed curves. A compact connected 1-manifold with non-empty boundary
is known to be an arc. Therefore a compact 1-manifold is a finite union of a dis-
Jjoint family of ares and simple closed curves. For a 2D ;iigital image, the follow-
ing equivalent definition will be more convenient: A simple closed curve is a
sequence of pixels p, py, . . ., P, (n >4)such that p; is 4-adjacent to p; if and
only if i =3 + 1 (mod n). The restriction n >4 is to exclude the two degen-

erate cases: S consisting of a single pixel, and S consisting of a single 2Xx2

. 1
matrix 1

1
1 A digital 4-arc is defined similarly.

The following lemma is a 2D version of the analogous theorem due to Kong

and Roscoe (7).

Lemma 6.1. A digital smage S is a simple closed §-curve (resp. §-arc) if
N

-,,E’.:‘{ and only if E(S) is a simple closed polygon (resp. arc).
‘
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3

" Proof. Let S be a simple closed 4-curve. Using the second definition
‘ above, it is clear that E(S) does not contain an isolated point or a square, and
q)

N that if S consists of py, py, ..., p, then E(S) consists of vertices v(p;) and
i

. line segments joining only every consecutive pair wv(p;), wv(p;) for
) J =1 +1(mod n). In other words, E(S) is a simple closed polygon.

ﬁ. Conversely let E(S) be a simple closed polygon with vertices
_ vy, Vg, . .., Y, labeled in consecutive order. Let p; be the unique pixel in S
K.

j such that v(p;) = v;. Since an isolated single point is not regarded as a simple
v, closed curve, S cannot contain just one pixel. Similarly S cannot be a single
4

i 11

' 2X 2 matrix like 1

.

Hence we must have n>4. Now it is clear that the sequence
" P, Pa - .., P, satisfies the condition for a simple closed curve. (The proof for
“

- the statement in the parentheses is similar.) //

4

The following theorem gives a partial characterization of a simple closed 4-
4 . . . .

> curve, and at the same time, it reveals a close relation between the two continu-
'Y

b,

- ous representations of a digital image.

A Proposition 6.2. Let S be a 2D digital image. If S is a simple closed 4-
5 curve then F (S) = E(S) (homeomorphism).

: Proof. Suppose that S is a simple closed 4-curve. If S contains no singu-
X larity then F(S)=¢ F(S), and F(S) is clearly homeomorphic with E(S) as
Jl

_-; claimed, and we are done. We study how a singularity may occur in §. Pick
)

any pixel p in §. By definition, there are exactly two other pixels 4-adjacent to

K.
N
§ 21
.

¢

e AT B AT T e R A A AT ™ N AN AN o W RS B e N T Pt B P U e s P R Rt et At A
‘ 1.,.4, YA v W0 W ) ol DO ey < s K A ’ /
'\‘. 40 o O y w.)\f'x‘,'l t'l‘,. JOLN Mt N W t\‘_“‘.’ S, .s ‘:’l‘!’t‘u O’n.lin.l s )t : .’( 20 ’}' ,0.‘.‘(0.’. .. M \ N .' X > \ Ny

LaidL bl and ik asi adh bt adl aidcats afia sy o i nil abd M8 SaiAci i e d™ "'771




p. There are only two possible cases (up to an equivalent transformation) as in

the figure below:

I z z z zT z
1 p1 lpr«z
I z z z 1 z

(a) (b)
Figure 6.2.
No singularity can occur in Figure 6.2(a). A singularity may occur in Figure
6.2(b), but only in the upper right 2)X2 sub-matrix. This shows that F(S) is
definitely not a product with [0,1] but that F (S) is as claimed. //

The converse is not true. Let S be a digital set of two 4-ad:acent pixels.
Then F(S) == F(S), and certainly F(S)=¢ E(S), but S is not a simple closed
4-curve. Notice that S is an arc. Indeed we have

Proposition 6.3. If F(S) = E(S) (homeomorphism) then S is a disjoint
union of §-arcs and simple closed 4-curves, and conversely.

Proof. Assume F (S) =< E(S). There are one-one correspondences between
the following sets: components of E(S), components of E(S), 4-components of

S, components of F (S). The conclusion follows from Lemma 6.1.

The converse follows easily. //

So far, a digital analog of a surface with boundary has not been defined in

the literature. With a suitable definition, one should be able to prove the follow-

ing conjecture: A 3D image S is a surface with boundary if and only if
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I
:}: F (S) = E(S) (homeomorphism).
,{ Remark 6.4. The 2D analog of the surface tracking algorithm of Herman
Jj et al. traces 9F (S ).
"' A rigorous proof is left to the interested reader. We shall merely study the
' generic examples given in Figures 3.3 and 3.4. Let S be the digital image with
- 4-adjacency in Figure 3.3a which is a simple closed 4-curve. The F(S) is a fat-
tened simple closed polygon E(S). The suggested tracking algorithm can be
y used for S with 8-adjacency, and it traces out the boundary curves of 4-
- components of the complement of S, that is just S. In our example, there are
-f two separate boundary curves. The interior curve looks like Figure 3.4¢c, which is
'; topologically equivalent to its graph in Figure 3.4d. It is an important fact that
‘j the curves traced by the above mentioned tracking algorithm are not in general
E\ stmple closed polygons.
5 Next let S be the same image, but with 8-adjacency. Then there are three
o components in U (S ), two of which are holes and the third of which is outside S.
__ Tl;e previously stated algorithm can be applied to Q@ = F(S). It traces out
"‘;: three P-components of Q. In our example, they look like Figure 3.3¢ with the
;SE two interior squares separated from each other. Topologically, they look more
o like the graph in Figure 3.3d which is just F (S). (Caution: The space F (S)
4

- depends on the adjacency used on §.) //

In this sense, we can say that the algorithm of Herman et al. traces E (S ).

R L g R N R R e e Tawt AT et I e R T ST . I )
SRR A " R PRI SR DI LT SRS N N P

e e !
)
R .‘\!{‘\i',.\‘,.\l, BT



< |
e !
5 f
?
b
\ .
: : 7. Concluding remarks !
|
We defined the closed subspace F(S) and the open subspace U(S) of
Euclidean space R? as primitive approximation of a 2D digital image S by con-
v tinuous topological spaces. This space F(S) is not new. In fact, it has always
e
N been thought of as the set of pixels representing S. We pointed out that F(S)
N
¢ (resp. U(S)) is a correct model for S itself with 8- (resp. 4-) adjacency, but not
Y . for its borders. However, one can get around this difficulty if one works with 2D
'Z'__' images only, but not if we want to develop 3D digital geometry as witnessed by
[ the difficulty encountered in the proof of orientability of a (closed) digital surface
@
_‘:i (with 6-adjacency), and by the fact that no direct proof of Proposition 5 in [10]
p "
has appeared in the literature up to now (*). The existing proof [11] depends on
. the continuous model of surfaces defined by Herman and his colleagues (1] {2] [4].
‘:{:; Thus it is clear that a good continuous model is needed so as to enable us to
j:jz make use of the wealth of results from continuous topology. In this paper, we
"y
refined the model F (S) to give a more accurate description of S and its borders.
":i We first defined the concept of singular points in F (S ), and showed a procedure
: to resolve them to obtain the refined model denoted by I':'(S) We produced a
e )
w new proof of the main theorem of Herman and Webster [4] using F (S) by first
f:j:' (*) We believe that the reason for this is that digital images are defined on a
= simply connected space. All existing proofs of Proposition 5 depend on the
e theorem of Herman and Webster whose proof is based on topological results on
49 polyhedral sets in Euclidean space, which is more than simply connected. In a
:»_‘_ private conversation with T.Y. Kong, we agreed that no digital analog of Euclide-
L an space has ever been effectively used so far. Therefore, if anybody wishes to

pursue digital geometry from a purely logical standpoint, it will be necessary to
further develop the digital analog of Euclidean geometry.
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constructing a purely topological analog, and then examining the differences

i' between the digital and the analogous topological statements. We gave another
'1.: proof of Proposition 5, but still depending on the result of Herman and Webster
W
) [4].
"('.:'
3 1*‘: Traditionally, there has existed another continuous model of S which we
o
::: denoted by E(S). It is roughly U(S) thinned down. Strangely, E(S) has
v always been used only for computing the Euler characteristic number of S, until
e
"i the appearance of Kong and Roscoe {7] in 1985. (See Minsky and Papert, Per-
o ceptrons (1969) (8], and Rosenfeld and Kak (1980) [16].) In [7], it is proved that a
®
“:; 3D digital image S is a surface with 6-adjacency in the sense of Morgenthaler
S
-t* and Rosenfeld (11] if and only if the 3D analog of E(S) is a surface (without
) boundary) in the sense of continuous topology.
& 'w
;Q' We showed that if S is 2D analog of a digital surface in the sense of [11]
*".“
4 then F (S) is topologically equivalent to E(S) (the cross product of E(S) and
_. the unit interval). The converse is in general not true, but if we modify the
<.
\, statement by replacing ‘‘surface’” by ‘‘surface with boundary’ then it may be
AR
‘oS true. As a corollary, the 2D analog of the surface tracking algorithm [1] [2] may
:\‘_ be used to trace E (S) in principle.
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APPENDIX A

The following is a topological analog of the main theorem of Herman and
Webster [4].
Proposition A. Let K be a connected cellular complex sn R", and let D

be a component of R® — K. Then the boundary set Bd (D) is connected.

(A ““cellular complex’ here can be thought of as a finite union of cubical
cells as defined in Section 2, or more generally as a CW-complex as defined in
Spanier [17].)

We need a formula from algebraic topology involving the Betti numbers.
For a topological space Y, a sequence of numbers called Betti numbers 6; (Y) are
defined for ¢+ =0, 1, - - - . b4(Y) is the number of (path) components of Y, and
b,(Y) is the number of independent loops in Y. For example, § ,(Y) = 2for Y
a torus with one hole, and 6,(Y)=0for ¥ = R". We need the following for-
mula: bo(A (1B)< b,(4 UB)+bo(A)+bo(B)-1, where A, B are
both open subspaces of R*® with A B # @, or A, B are both subcomplexes
of a cellular complex with A () B £ @. This formula can be derived from the
Mayer-Vietoris exact homology sequence for the pair (A, B). (See Spanier [17]
for details.)

Proof. It follows easily that R® — K has finitely many components, one of
which is D. Denote the other components by D; (1 = 1,2, - ). Then
R" -K =D | J(Ji Di)- Notice that each D, is open in R" since X - K is

open and R" is locally connected. Let K* = K | J(|J; Di)- Then

R S B!
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'“.: D =R"™ -K+¥, and K+ = R" -D is a closed set of R®. D being open in
P R", D N\ Bd D = 0. Hence Bd D C Bd K. Similarly Bd D; C Bd K for
: all 4.

? Claim: K# is connected. It suffices to prove that if A is a non-empty sub-
?‘t set of K+* which is open and closed in K* then A = K+#. Notice that A must
:: be closed in R™ since K* is. K being connected, either A (1K =0 or
. K CA. Case1: Suppose A (1K = 0. Then A mD,-yéﬂforsomei. D;
E‘\ being connected, D; C A. On the other hand, A being closed in R”,
S: Cl(D;) C A and hence Bd D; = CI(D;)-D; C A, but Bd D; C K, contrad-
T“ icting the assumption A [V K =0. Case 2: Suppose K C A. IfD; (VA 0
:‘;E then D; C A as observed before. Hence A = K | J(|J; D;) where j ranges

over a subset of the ¢'s. Suppose D; (1A =0. Let z€ Bd D; C K. Since

58

:f_i C(D;)C K* and K C A and A is open in K*, A is an open neighborhood of

~‘”

.;:: z in K#. This then means A [\ D; %0 contradicting the assumption

’;). D; (1A = 0. Hence A must contain all D;’s, which means A = K+#. This

ey '

o proves the claim.

84

', : Now we apply the formula for A =Cl(D), B = K+*. Notice

_ Bd D =A (B and R* = A |JB. Since b,CI(D)=bo(K*)=1, and
>

oy

:‘u bo (R"™) =0, we conclude that bo(Bd D)=1. [/

This proposition is not in the most general form, which is of no interest to

us. The important question here is ‘‘What makes the topological form so easy

whereas the purely digital form seems so difficult?” The critical difference seems
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to be the lack of efficient use o‘f the fact that digital images are taken in
Euclidean space. The above proof uses the property of simple connectedness of
Euclidean space. Perhaps that is all we need from Euclidean space. If we replace
R? by a non-simply connected space, the proposition may not be true. We end

this section with a brief explanation of this phenomenon.

A space Y is said to be simply connected if Y is (path-wise) connected, and
every loop in Y is deformable to a point. For example, an open n-ball and an
n -sphere in R"*! are simply connected, but a simple closed curve is not. The
above theorem is not true if we replace “simply connected’ by the weaker condi-
tion ‘“‘connected”. For example, take an annulus for X as in the figure below,
and K for the right half shown by the shaded area. Then D is the left half in
the figure, and the set Bd D consists of two disjoint (vertical) line segments
which contradicts the conclusion of the theorem. This is because X is not simply

connected.
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10N APPENDIX B
1528 Morgenthaler postulated conditions on S under which S is a correct sample
o .
i’ of F(S) [9]. It turns out that his conditions are equivalent to non-existence of
o
-' singularities in S. Denote by N/(p ) the set of all 8-neighbors of p including p,
,"‘ by O (S) the number of components in the sense of S, and by O (X') the number
p.. h\':
,*‘5: of components of a topological space X . His conditions are:
'
| M1 O(F(SMN(p)) =0(SMN(p)),allp inS.
N
P ‘.ﬂ-_'
o M2. O(FEMN@®)) =0(SMNN(p)),allpins
X
® This gives us an opportunity to characterize singularity from a different per-
f;‘_;. spective.
'.:’.': Lemma. The following conditions on a 2D digital image S are equivalent to
each other:

o \.‘ r

et g8
) "-_
.I\ﬁ'-

2y S1. S has no singularity.
) S2. Ifp, q in S are 8-adjacent to each other then there 1s r in S which 1s
"
:::.E- 4-adjacent to bothp and q.
::: S3. Analog of S2 for S .

10
Proof. If S2 is false then there exists a 2X2 matrix ; (or its rotation by

90 degrees) which is a singularity. This proves that S1 implies S2. By symmetry,

S1 implies S3. If S1 is false then S contains a singularity which is simply a 22

. -"- '-.r.r Ly %
RREL J XA

o
:::,‘ matrix such as that above which certainly violates both S2 and S3. Thus each of
s S2 and S3 implies S1. //
-
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Proposition.  Condition (M1 and M2) is equivalent to non-ezistence of a

singularity in S .
Proof. Recall that O(F(s nN’(p)]] equals the number of 8-

components of S [\ NV '(p). Thus if 8-adjacency is used on S then M1 holds
automatically, and M2 is easily seen to be equivalent to S1 as 4-adjacency is sup-
posedly used on §. By symmetry, if 4-adjacency is used on S, then M1 is

equivalent to S2. //
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